Molecular characterization of dihydroneopterin aldolase and aminodeoxychorismate synthase in common bean-genes coding for enzymes in the folate synthesis pathway.
نویسندگان
چکیده
Common beans (Phaseolus vulgaris) are excellent sources of dietary folates, but different varieties contain different amounts of these compounds. Genes coding for dihydroneopterin aldolase (DHNA) and aminodeoxychorismate synthase (ADCS) of the folate synthesis pathway were characterized by PCR amplification, BAC clone sequencing, and whole genome sequencing. All DHNA and ADCS genes in the Mesoamerican cultivar OAC Rex were isolated and compared with those genes in the genome of Andean genotype G19833. Both genotypes have two functional DHNA genes and one pseudo gene. PvDHNA1 and PvDHNA2 proteins have similar secondary structures and conserved residues as DHNA homologs in Staphylococcus aureus and Arabidopsis. Sequence analysis and synteny mapping indicated that PvDHNA1 might be a duplicated and transposed copy of PvDHNA2. There is only one ADCS gene (PvADCS) identified in the bean genome and it is identical in OAC Rex and G19833. PvADCS has the conserved motifs required for catalytic activity similar to other plant ADCS homologs. DHNA and ADCS gene-specific markers were developed, mapped, and compared to their physical locations on chromosomes 1 and 7, respectively. The gene-specific markers developed in this study should be useful for detection and selection of varieties with enhanced folate contents in bean breeding programs.
منابع مشابه
Folate biosynthesis in higher plants. cDNA cloning, heterologous expression, and characterization of dihydroneopterin aldolases.
Dihydroneopterin aldolase (EC 4.1.2.25) is one of the enzymes of folate synthesis that remains to be cloned and characterized from plants. This enzyme catalyzes conversion of 7,8-dihydroneopterin (DHN) to 6-hydroxymethyl-7,8-dihydropterin, and is encoded by the folB gene in Escherichia coli. The E. coli FolB protein also mediates epimerization of DHN to 7,8-dihydromonapterin. Searches of the Ar...
متن کاملAn atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites
Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step i...
متن کاملSulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase.
Sulfonamide resistance in recent isolates of Streptococcus pyogenes was found to be associated with alterations of the chromosomally encoded dihydropteroate synthase (DHPS). There were 111 different nucleotides (13.8%) in the genes found in susceptible and resistant isolates, respectively, resulting in 30 amino acid changes (11.3%). These substantial changes suggested the possibility of a forei...
متن کاملRegulation by oligomerization in a mycobacterial folate biosynthetic enzyme.
Folate derivatives are essential cofactors in the biosynthesis of purines, pyrimidines and amino acids across all forms of life. Mammals uptake folate from their diets, whereas most bacteria must synthesize folate de novo. Therefore, the enzymes in the folate biosynthetic pathway are attractive drug targets against bacterial pathogens such as Mycobacterium tuberculosis, the cause of the world's...
متن کاملCharacterization of the Saccharomyces cerevisiae Fol1 protein: starvation for C1 carrier induces pseudohyphal growth.
Tetrahydrofolate (vitamin B9) and its folate derivatives are essential cofactors in one-carbon (C1) transfer reactions and absolutely required for the synthesis of a variety of different compounds including methionine and purines. Most plants, microbial eukaryotes, and prokaryotes synthesize folate de novo. We have characterized an important enzyme in this pathway, the Saccharomyces cerevisiae ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome
دوره 60 7 شماره
صفحات -
تاریخ انتشار 2017